Center Independent Research & Development: GSFC IRAD

Micro-Sample Extraction System for In-Situ Missions to Planets, Planetary Satellites, and Primitive Bodies

Completed Technology Project (2014 - 2015)

Project Introduction

We propose to develop a proof-of-concept **Micro-Sample Extraction System** (μ SES) to enable microfluidic instruments, currently under development at NASA Goddard Space Flight Center, by miniaturization of up-stream components of micro-analytical instruments for in situ missions to primitive bodies and planetary satellites. μ SES will be a lab-on-a-chip component.

The proposed **µSES** on-a-chip is a similar extraction system to that found on Sample Analysis at Mars's (SAM) Sample Manipulation System (SMS). However, **µSES** will be different in that it will also be able to extract from liquids. The other capability will be the ability to conduct pyrolysis at a power consumption much less than current techniques. The low power consumption of the micro-chip will enable in-situ exploration of planetary satellites and primitive bodies at a lower cost due to less mass and power requirement. Most importantly, **µSES** will be able to couple with other microfluidic analytical chips.

Anticipated Benefits

Miniaturization of analytical instruments will enable low-resource analytical instruments for Discovery and New Frontiers missions to distant targets such as the Jovian system, Saturn moons, and primitive bodies.

Primary U.S. Work Locations and Key Partners

Table of Contents

Project Introduction	1
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Links	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Center Independent Research & Development: GSFC IRAD

Micro-Sample Extraction System for In-Situ Missions to Planets, Planetary Satellites, and Primitive Bodies

Completed Technology Project (2014 - 2015)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Primary U.S. Work Locations

Maryland

Images

uSES

uSES

(https://techport.nasa.gov/imag e/16263)

Links

GSC-17054-1

(https://ntts.arc.nasa.gov/app/)

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

Terence A Doiron

Principal Investigator:

Manuel A Balvin

Technology Maturity (TRL)

Estimated End: 2

Center Independent Research & Development: GSFC IRAD

Micro-Sample Extraction System for In-Situ Missions to Planets, Planetary Satellites, and Primitive Bodies

Completed Technology Project (2014 - 2015)

Technology Areas

Primary:

